

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011



### European Technical Assessment ETA-13/0743 of 10/08/2016

#### I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

| Trade name of the construction product:                                                                                   | PE50 PRO bonded anchor                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product family to which the above construction product belongs:                                                           | Bonded anchor with anchor rod made of galvanized steel or stainless steel of sizes M8, M10 and M12, for use in masonry                                          |
| Manufacturer:                                                                                                             | ALSAFIX SAS<br>114a Rue Principale<br>F-67240 Gries<br>Tel. +33 388 72 42 41<br>Fax +33 388 72 17 15<br>Internet <u>www.alsafix.com</u>                         |
| Manufacturing plant:                                                                                                      | ALSAFIX SAS<br>Manufacturing plant I                                                                                                                            |
| This European Technical<br>Assessment contains:                                                                           | 22 pages including 17 annexes which form an integral part of the document                                                                                       |
| This European Technical<br>Assessment is issued in<br>accordance with Regulation<br>(EU) No 305/2011, on the basis<br>of: | Guideline for European Technical Approval (ETAG)<br>No. 029 Injection Anchors for use in masonry, April<br>2013, used as European Assessment Document<br>(EAD). |
| This version replaces:                                                                                                    | ETA-13/0743 issued on 2013/06/28                                                                                                                                |

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

#### II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

### 1 Technical description of product and intended use

#### Technical description of the product

The Injection system PE50 PRO is a bonded anchor (injection type) consisting of a mortar cartridge with ALSAFIX injection mortar, a perforated sleeve, and an anchor rod with hexagon nut and washer in the range of M8, M10 and M12.

The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry.

An illustration of the product and intended use is given in Annex A1 and Annex A2.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation<sup>1</sup> of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A3, Table A1. For the installed anchor see Figure given in Annex A2. The intended use specifications of the product are detailed in the Annex B1.

### 2 Specification of the intended use in accordance with the applicable EAD

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in solid masonry (use

category b) or hollow or perforated masonry (use category c) according to Annex B8. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

The anchors may be installed in Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

The anchors may be used in the following temperature range:

a)  $-40^{\circ}$ C to  $+40^{\circ}$ C (max. short term temperature  $+40^{\circ}$ C and max. long term temperature  $+24^{\circ}$ C),

b)  $-40^{\circ}$ C to  $+50^{\circ}$ C (max. short term temperature  $+50^{\circ}$ C and max. long term temperature  $+40^{\circ}$ C).

Elements made of galvanized steel or stainless steel may be used in structures subject to dry internal conditions only.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

<sup>1</sup> The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

## 3 Performance of the product and references to the methods used for its assessment

#### **3.1** Characteristics of product

#### Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C3.

#### Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C4.

#### Hygiene, health and the environment (BWR3):

Regarding the dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

#### Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

#### Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Works Requirements are not relevant

#### 3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Injection Anchors for Use in Masonry", ETAG 029, based on the Use Categories b and c in respect of the base material and Category w/d in respect of installation and use.

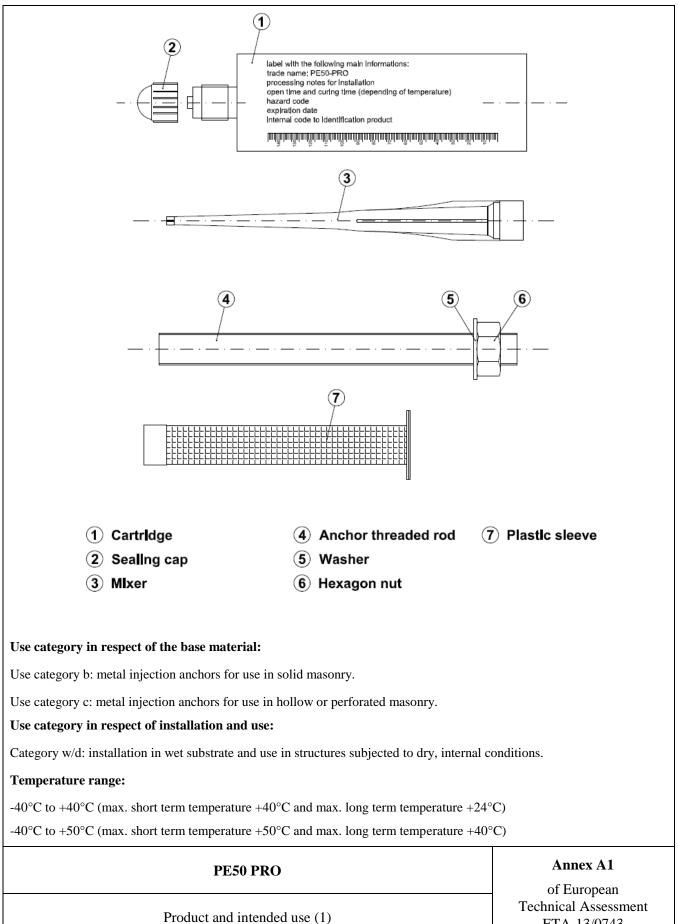
In addition to the specific clauses relating to dangerous substances contained in this European technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products

Regulation, these requirements need also to be complied with, when and where they apply.

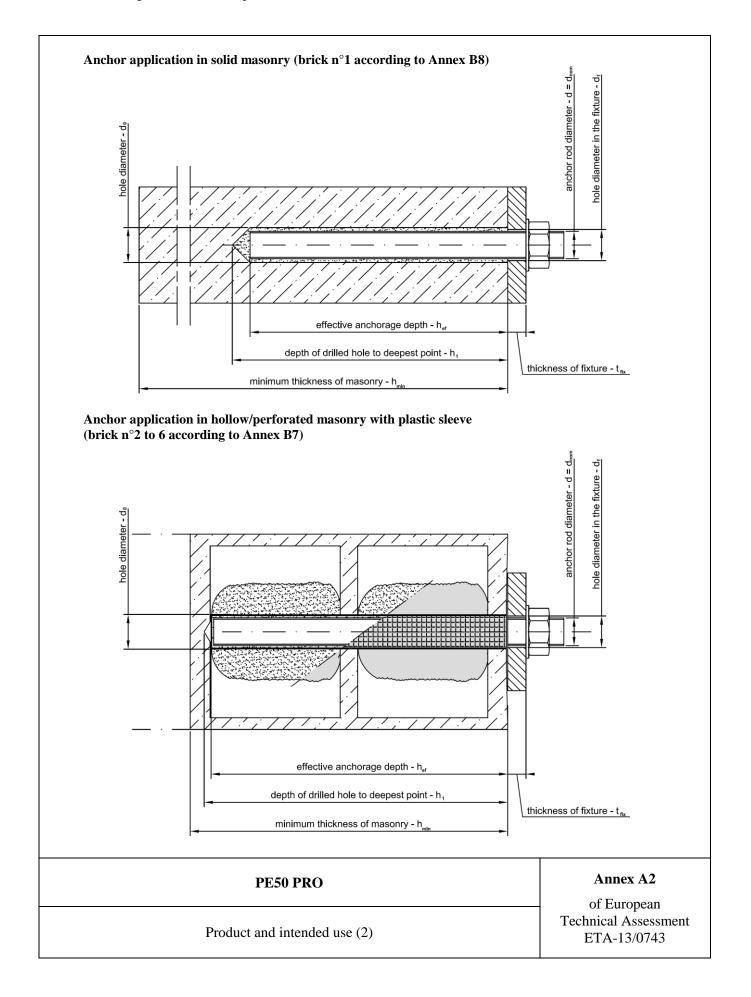
## 4 Attestation and verification of constancy of performance (AVCP)

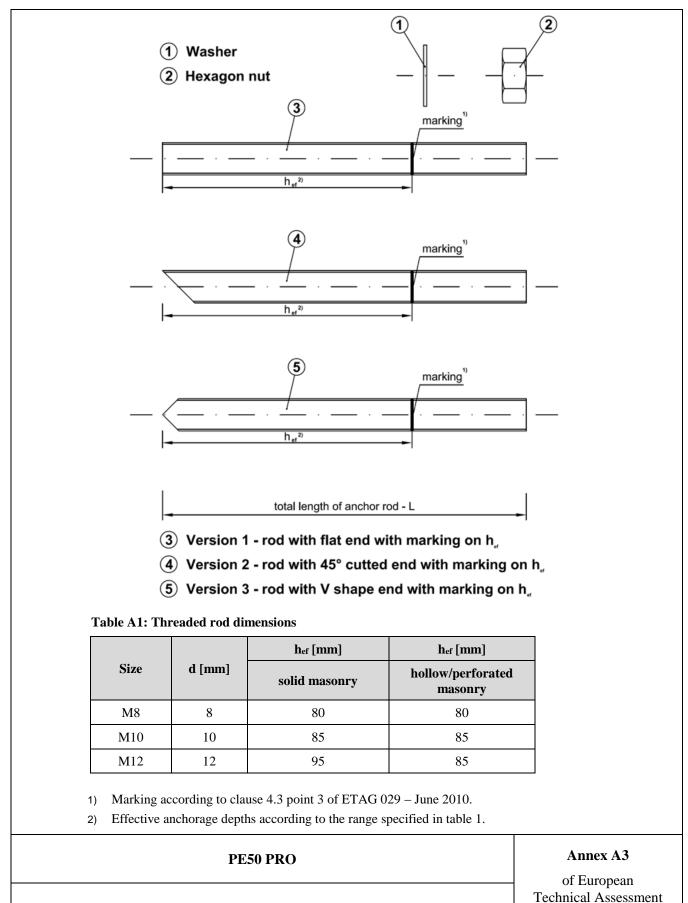
#### 4.1 AVCP system

According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.


# 5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark


Issued in Copenhagen on 2016-08-10 by


Thomas Bruun

Manager, ETA-Danmark



ETA-13/0743





Threaded rod types and dimensions

ETA-13/0743

|              | Desig                                                                                    | Designation                                                                                    |  |  |  |
|--------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| Part         | Steel, zinc plated ≥ 5 µm acc. to EN<br>ISO 4042                                         | Stainless steel                                                                                |  |  |  |
| Threaded rod | Steel, property class 5.8 or 6.8, acc. to EN ISO 898-1                                   | Material 1.4401 / 1.4571 acc. to EN<br>10088; property class 70 (A4-70) acc. to<br>EN ISO 3506 |  |  |  |
| Hexagon nut  | Steel, property class 5 or 6, acc. to EN 20898-2; corresponding to threaded rod material | Material 1.4401 / 1.4571 acc. to EN<br>10088; property class 70 (A4-70) acc. to<br>EN ISO 3506 |  |  |  |
| Washer       | Steel, acc. to EN ISO 7089;<br>corresponding to threaded rod material                    | Material 1.4401 / 1.4571 acc. to EN<br>10088; corresponding to threaded rod<br>material        |  |  |  |

Commercial standard threaded rods with:

material and mechanical properties according to Table 2;

- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004;
- marking of the threaded rod with the embedment depth.

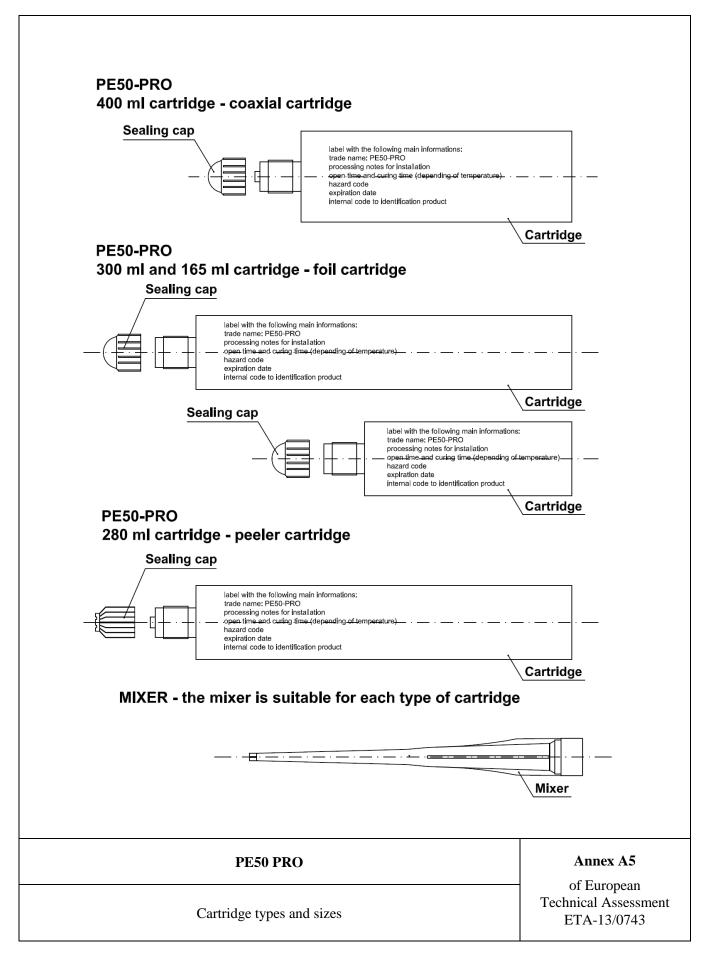
#### **Table A3: Injection mortar**

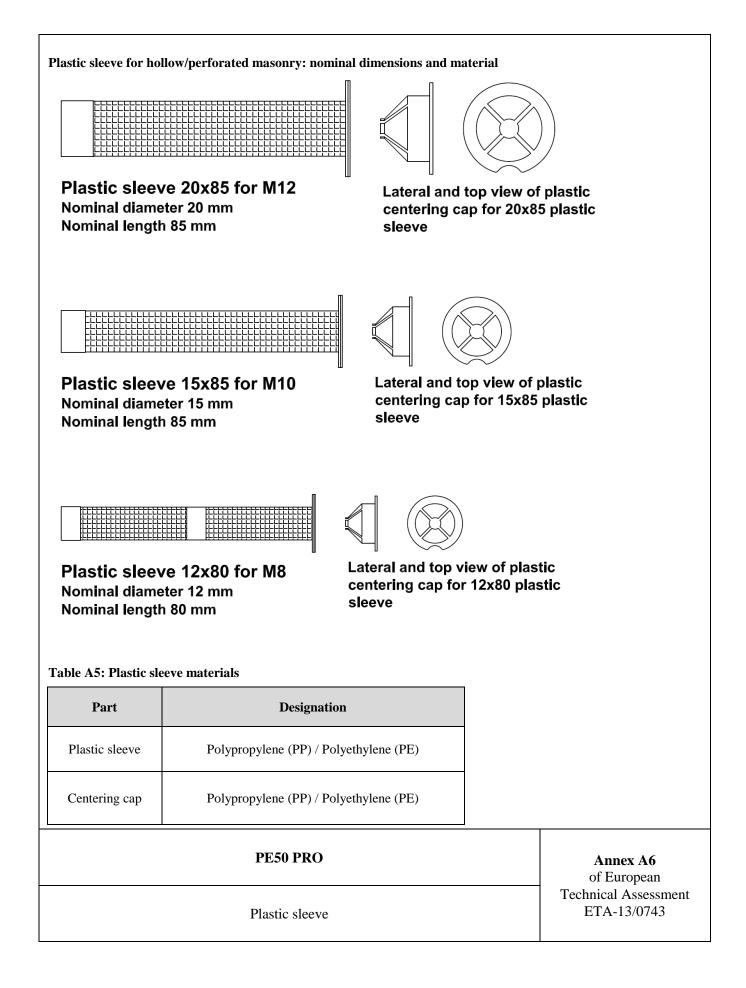
| Product                                     | Composition                                                                                     |
|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| PE50 PRO<br>two components injection mortar | Additive: quartz<br>Bonding agent: polyester resin styrene free<br>Hardener: dibenzoyl peroxide |

#### Table A4: Minimum curing time<sup>3)</sup>

| Masonry temperature | Processing time | Minimum curing time <sup>5)</sup> |
|---------------------|-----------------|-----------------------------------|
| $0^{\circ}C^{4)}$   | 25 min          | 180 min                           |
| $5^{\circ}C^{4)}$   | 15 min          | 120 min                           |
| 10°C                | 12 min          | 90 min                            |
| 15°C                | 8 min           | 60 min                            |
| 20°C                | 6 min           | 45 min                            |
| 25°C                | 4 min           | 30 min                            |
| 30°C                | 3 min           | 20 min                            |

3) the minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer).


- 4) minimum resin temperature recommended, for injection between  $5^{\circ}$ C and  $0^{\circ}$ C, equal to  $5^{\circ}$ C.
- 5) minimum curing time for dry and wet conditions.


#### PE50 PRO

Materials and curing time

Annex A4

of European Technical Assessment ETA-13/0743





Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

#### Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M12.

#### **Base materials:**

Solid masonry (use category b) or hollow or perforated masonry (use category c) according to Annex B7. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

#### **Temperature range:**

The anchors may be used in the following temperature range:

a) -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C),

b) -40°C to +50°C (max. short term temperature +50°C and max. long term temperature +40°C).

#### Use conditions (Environmental conditions):

Threaded rods:

a) Carbon galvanized steel class 5.8 or 6.8 according to EN ISO 898-1 for dry internal conditions.

b) Stainless steel A4-70 and A4-80 according to EN ISO 3506 for dry internal conditions.

Nuts and washers:

Corresponding to anchor rod material above mentioned for the different environmental exposures.

#### Installation:

- Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.
- Perforation with drilling machine

#### **Proposed design methods:**

- ETAG 029, Annex C, Design method A

#### PE50 PRO

Annex B1

Intended use - Specification

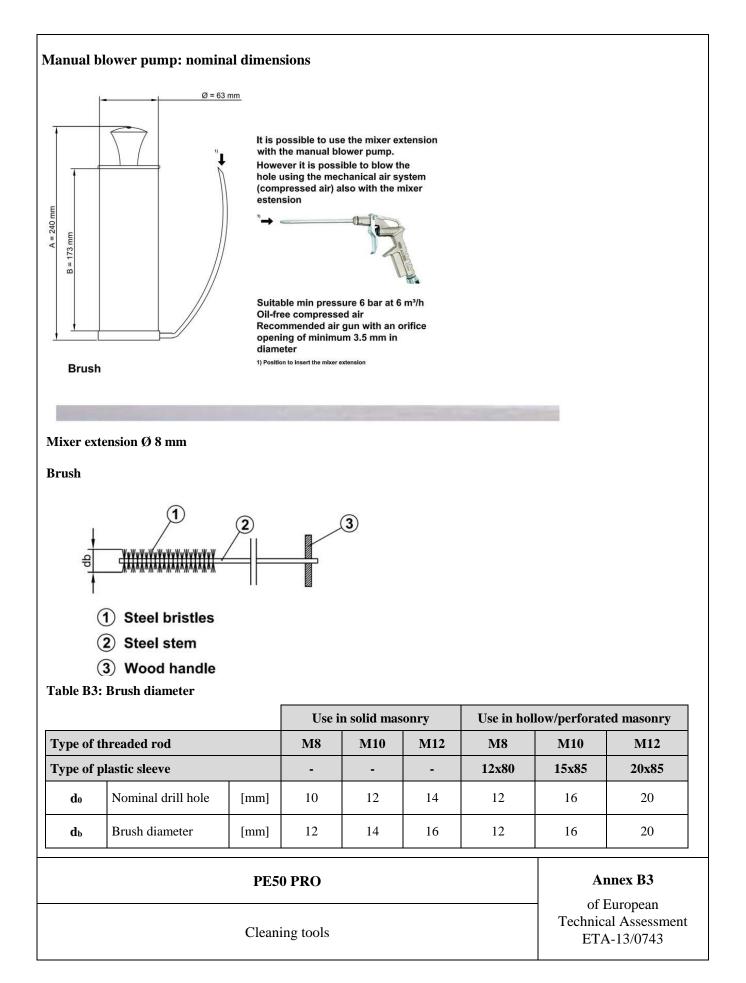
of European Technical Assessment ETA-13/0743

| Size                                       |                           | <b>M8</b> | M10               | M12 |
|--------------------------------------------|---------------------------|-----------|-------------------|-----|
| Nominal drilling diameter                  | d <sub>0</sub> [mm]       | 10        | 12                | 14  |
| Maximum<br>diameter hole in<br>the fixture | d <sub>fix</sub> [mm]     | 9         | 12                | 14  |
| Embedment depth                            | h <sub>ef</sub> [mm]      | 80        | 85                | 95  |
| Depth of the drilling hole                 | h <sub>1</sub> [mm]       |           | $h_{ef} + 5 \ mm$ |     |
| Torque moment                              | T <sub>inst</sub> [Nm]    | 5         | 8                 | 10  |
| Thickness to be                            | t <sub>fix,min</sub> [mm] |           | > 0               |     |
| fixed                                      | t <sub>fix,max</sub> [mm] |           | < 1500            |     |
| Minimum spacing                            | S <sub>min</sub> [mm]     | 240       | 255               | 285 |
| Minimum edge<br>distance                   | C <sub>min</sub> [mm]     | 120       | 128               | 143 |

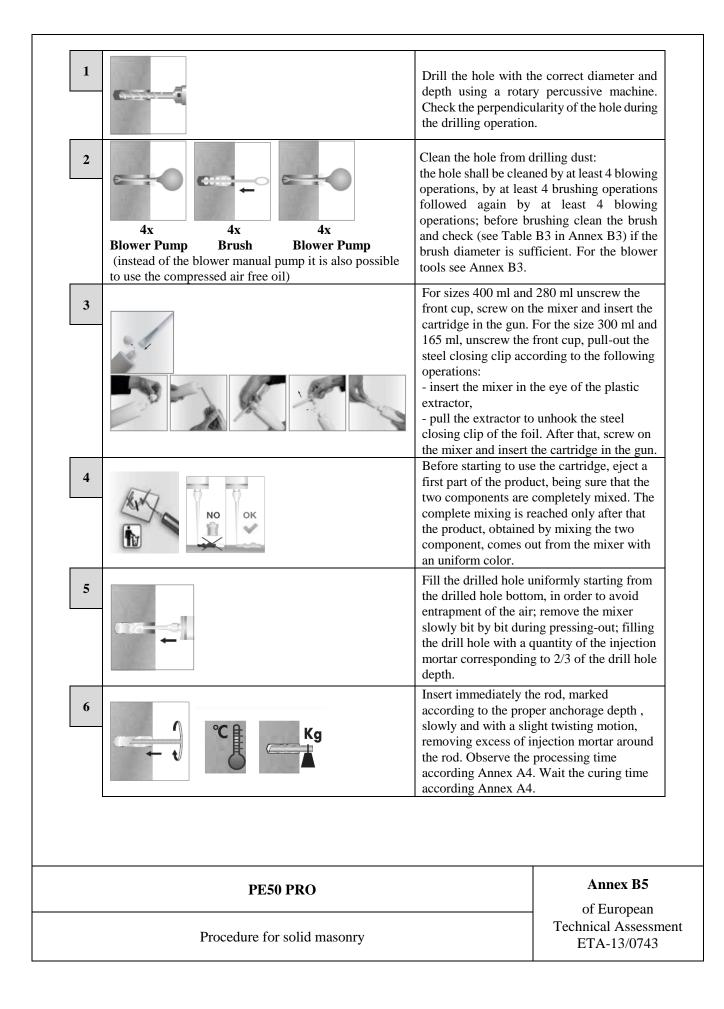
\* Type of bricks are detailed in the Annex B7

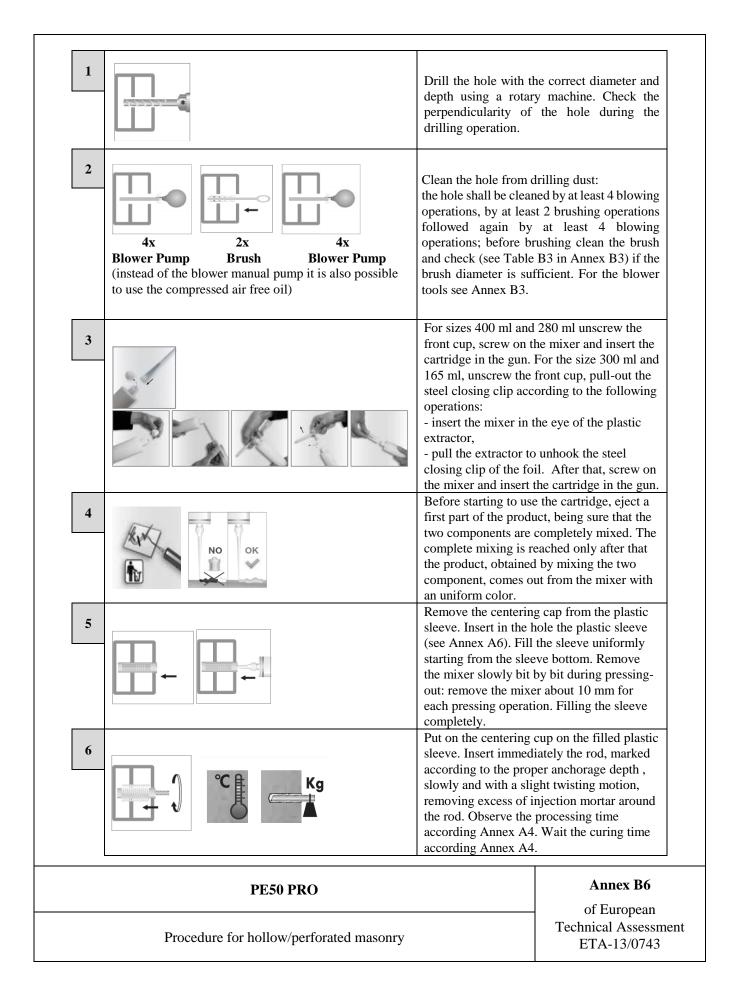
#### Table B2: Installation data for hollow/perforated masonry (brick $n^{\circ} 2$ to 6)\*

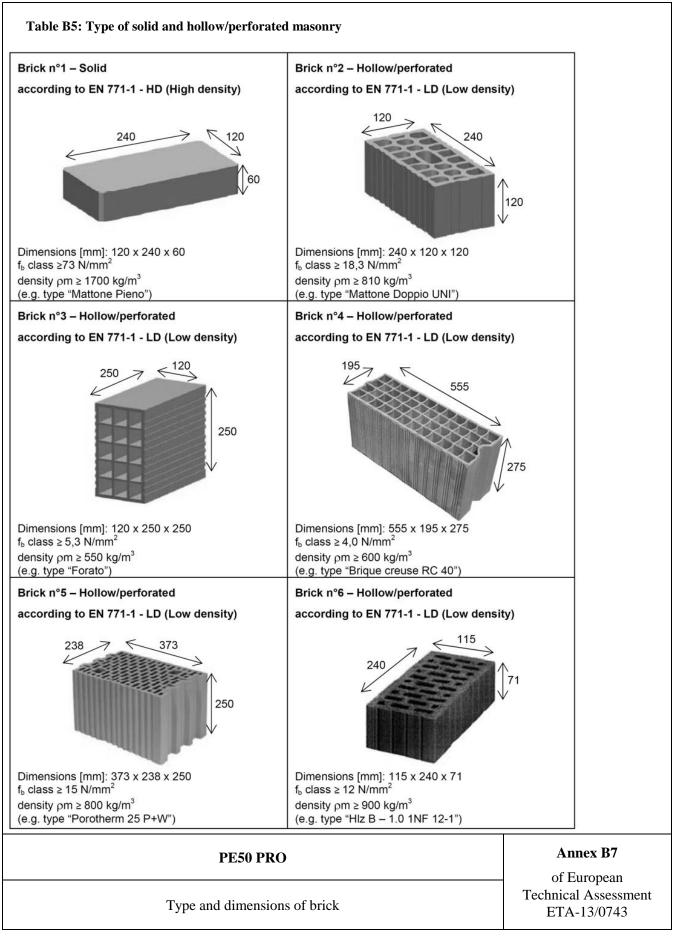
| Size                                       |                           | M8     | M10               | M12   |
|--------------------------------------------|---------------------------|--------|-------------------|-------|
| Plastic sleeve                             |                           | 12x80  | 15x85             | 20x85 |
| Nominal drilling diameter                  | d <sub>0</sub> [mm]       | 12     | 16                | 20    |
| Maximum<br>diameter hole in<br>the fixture | d <sub>fix</sub> [mm]     | 9      | 12                | 14    |
| Embedment depth                            | h <sub>ef</sub> [mm]      | 80     | 85                | 85    |
| Depth of the drilling hole                 | h <sub>1</sub> [mm]       |        | $h_{ef} + 5 \ mm$ |       |
| Torque moment                              | T <sub>inst</sub> [Nm]    | 3      | 4                 | 6     |
| Thickness to be                            | t <sub>fix,min</sub> [mm] |        | > 0               |       |
| fixed                                      | t <sub>fix,max</sub> [mm] | < 1500 |                   |       |
| Minimum spacing                            | S <sub>min</sub> [mm]     | 100    | 100               | 120   |
| Minimum edge<br>distance                   | C <sub>min</sub> [mm]     | 100    | 100               | 120   |


\* Type of bricks are detailed in the Annex B7

#### PE50 PRO


Annex B2


Intended use - data


of European Technical Assessment ETA-13/0743



| Resin injection pump details  |                                                               |        |  |  |  |
|-------------------------------|---------------------------------------------------------------|--------|--|--|--|
| Pump example                  | Size cartridge                                                | Туре   |  |  |  |
|                               | 400 ml                                                        | Manual |  |  |  |
|                               | 300 ml<br>280 ml<br>165 ml                                    | Manual |  |  |  |
|                               |                                                               |        |  |  |  |
|                               |                                                               |        |  |  |  |
|                               |                                                               |        |  |  |  |
| PE50 PRO<br>Tools for injecti | Annex B4<br>of European<br>Technical Assessmen<br>ETA-13/0743 |        |  |  |  |







| Table C1: Essential | Characteristics |
|---------------------|-----------------|
|---------------------|-----------------|

| ESSENTIAL CHAP                                                            | RACTERISTICS                                        | PERFORMANCE |                 |       |
|---------------------------------------------------------------------------|-----------------------------------------------------|-------------|-----------------|-------|
| Installation parameter                                                    | ters                                                | M8          | M10             | M12   |
| l [mm]                                                                    |                                                     | 8           | 10              | 12    |
| lo [mm] category b (s                                                     | solid masonry)                                      | 10          | 12              | 14    |
| Io [mm] category c (1                                                     | nollow or perforated masonry)                       | 12          | 16              | 20    |
| Type of plastic sleeve                                                    | e for use in category c                             | 12x80       | 15x85           | 20x85 |
| l <sub>fix</sub> [mm]                                                     |                                                     | 9           | 12              | 14    |
| 11 [mm]                                                                   |                                                     |             | $h_{ef} + 5 mm$ |       |
| []                                                                        | Min                                                 |             | > 0             |       |
| fix [mm]                                                                  | Max                                                 |             | ≤ 1500 mm       |       |
| Finst [Nm] category b                                                     | (solid masonry)                                     | 5           | 8               | 10    |
| Finst [Nm] category c                                                     | (hollow or perforated                               | 3           | 4               | 6     |
| nasonry)                                                                  |                                                     |             |                 |       |
| Smin [mm] category b                                                      | (solid masonry)                                     | 240         | 255             | 285   |
| C <sub>min</sub> [mm] category b (solid masonry)                          |                                                     | 120         | 128             | 143   |
| S <sub>min</sub> e C <sub>min</sub> [mm] category c (hollow or perforated |                                                     | 100         | 100             | 120   |
| nasonry)                                                                  |                                                     |             |                 |       |
| * Resistance for tens                                                     |                                                     |             |                 |       |
| <b>Femperature range</b><br>and                                           | $-40^{\circ}C/+40^{\circ}C (T_{mlp} = 24^{\circ}C)$ | <b>M8</b>   | M10             | M12   |
| 40°C/+50°C (T <sub>mlp</sub> =                                            | = 40°C)                                             |             |                 |       |
| Brick n°1                                                                 | N <sub>Rk</sub> [kN]                                | 1,50        | 2,50            | 3,00  |
|                                                                           | V <sub>Rk</sub> [kN]                                | 1,50        | 2,50            | 3,00  |
| Brick n°2                                                                 | N <sub>Rk</sub> [kN]                                | 3,50        | 4,00            | 5,00  |
|                                                                           | V <sub>Rk</sub> [kN]                                | 3,50        | 4,00            | 5,00  |
| Brick n°3                                                                 | N <sub>Rk</sub> [kN]                                | 0,60        | 1,50            | 1,50  |
|                                                                           | V <sub>Rk</sub> [kN]                                | 0,60        | 1,50            | 1,50  |
| Brick n°4                                                                 |                                                     | 0,90        | 0,90            | 0,60  |
| Brick n°4 V <sub>Rk</sub> [kN]                                            |                                                     | 0,90        | 0,90            | 0,60  |
| Prick nº5                                                                 | N <sub>Rk</sub> [kN]                                | 2,00        | 2,00            | 2,50  |
| Brick $n^{\circ}5$ $V_{Rk}[kN]$                                           |                                                     | 2,00        | 2,00            | 2,50  |
| Brick n°6                                                                 | N <sub>Rk</sub> [kN]                                | 3,00        | 4,00            | 4,00  |
|                                                                           | V <sub>Rk</sub> [kN]                                | 3,00        | 4,00            | 4,00  |

\* For design according to ETAG 029 Annex C:  $N_{Rk} = N_{Rk,p} = N_{Rk,p} = N_{Rk,pb} - steel failure is not decisive$  $* For design according to ETAG 029: <math>V_{Rk} = V_{Rk,b} - steel failure without lever arm is not decisive - V_{Rk,c}$  according to ETAG 029 Annex C section C.5.2.2.5

#### **Table C2: Characteristic bending moments**

| Size                                                                                     |                   |      | M8   | M10  | M12 |
|------------------------------------------------------------------------------------------|-------------------|------|------|------|-----|
| Characteristic resistance with standard threaded rod grade 5.8                           | M <sub>Rk,s</sub> | [Nm] | 19   | 37   | 65  |
| Partial safety factor                                                                    | $\gamma_{Ms}$     | [-]  | 1,25 |      |     |
| Characteristic resistance with standard threaded rod grade 6.8                           | M <sub>Rk,s</sub> | [Nm] | 22   | 45   | 79  |
| Partial safety factor                                                                    | $\gamma_{Ms}$     | [-]  |      | 1,25 |     |
| Characteristic resistance with standard threaded<br>rod stainless steel A4-70 (class 70) | M <sub>Rk,s</sub> | [Nm] | 26   | 52   | 92  |
| Partial safety factor                                                                    | $\gamma_{Ms}$     | [-]  |      | 1,56 |     |

| PE50 PRO                                                   | Annex C1                            |
|------------------------------------------------------------|-------------------------------------|
|                                                            | of European                         |
| Performance for static and quasi-static loads: Resistances | Technical Assessment<br>ETA-13/0743 |

| ESSENTIAL CHARACTERISTICS                                                                             |                         | PERFORMANCE              | PERFORMANCE       |                                         |  |
|-------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|-------------------|-----------------------------------------|--|
| * Resistance for tensile and s<br>Temperature range -40°C/+4<br>-40°C/+50°C (T <sub>mlp</sub> = 40°C) |                         | M8                       | M10               | M12                                     |  |
| γ <sub>Mm</sub> [-] Category w/d                                                                      |                         |                          | 2,50              |                                         |  |
| Brick n°l —                                                                                           | <sub>cr,N</sub> [mm]    | 240                      | 255               | 285                                     |  |
| (                                                                                                     | cr,N [mm]               | 120                      | 128               | 143                                     |  |
|                                                                                                       | <sub>cr,N</sub> [mm]    | 240                      | 240               | 240                                     |  |
| (                                                                                                     | cr,N [mm]               | 120                      | 120               | 120                                     |  |
| Brick n° 3                                                                                            | cr,N [mm]               | 250                      | 250               | 250                                     |  |
|                                                                                                       | cr,N [mm]<br>cr,N [mm]  | <u>125</u><br>555        | <u>125</u><br>555 | 125<br>555                              |  |
| Brick n <sup>°</sup> /l                                                                               | cr,N [mm]               | 278                      | 278               | 278                                     |  |
| S                                                                                                     | cr,N [mm]               | 373                      | 373               | 373                                     |  |
|                                                                                                       | cr,N [mm]               | 187                      | 187               | 187                                     |  |
| S                                                                                                     | cr,N [mm]               | 240                      | 240               | 240                                     |  |
| Brick n°6                                                                                             | cr,N [mm]               | 120                      | 120               | 120                                     |  |
| β coefficient for in situ test (H                                                                     | CTAG 029 Annex B)       | M8                       | M10               | M12                                     |  |
| Temperature range: -40°C/+                                                                            |                         | 1910                     | -                 | 19114                                   |  |
| Brick n° 1, 2, 3, 4, 6                                                                                | β[-]                    | 0.17                     | 0,70              | 0 -0                                    |  |
| Brick n° 5                                                                                            | β[-]                    | 0,65                     | 0,70              | 0,70                                    |  |
| Displacement under service le<br>Tensile load                                                         | Dad                     |                          |                   |                                         |  |
| Brick n°1 – Solid brick                                                                               |                         | M8                       | M10               | M12                                     |  |
| Admissible service load in tens                                                                       | ile F [kN]              | 0,65                     | 1,03              | 1.15                                    |  |
|                                                                                                       | $\delta_{N0} [mm]$      | 0,08                     | 0,07              | 0,06                                    |  |
| Displacement                                                                                          | $\delta_{N\infty}$ [mm] | 0,16                     | 0,16              | 0,16                                    |  |
| ÖN∞ [IIIIII]                                                                                          |                         | M8                       | M10               | M12                                     |  |
| Brick n°2 – Hollow/perforated brick                                                                   |                         | 12x80                    | 15x85             | 20x85                                   |  |
| Admissible service load in tensile F [kN]                                                             |                         | 1,48                     | 1,81              | 2,09                                    |  |
|                                                                                                       | δ <sub>N0</sub> [mm]    | 0,06                     | 0,08              | 0,10                                    |  |
| Displacement                                                                                          |                         | 0,16                     | 0,16              | 0,20                                    |  |
| δ <sub>N∞</sub> [mm]                                                                                  |                         |                          |                   | 0,20<br>M12                             |  |
| Brick n°3 – Hollow/perforated brick                                                                   |                         | 12x80                    | 15x85             | 20x85                                   |  |
| Admissible service load in tens                                                                       | ile F [kN]              | 0,29                     | 0,73              | 0,80                                    |  |
|                                                                                                       | δ <sub>N0</sub> [mm]    | 0,06                     | 0.08              | 0.07                                    |  |
| Displacement                                                                                          | $\delta_{N\infty}$ [mm] | 0,16                     | 0,16              | 0,16                                    |  |
|                                                                                                       |                         | M8                       | M10               | M12                                     |  |
| Brick n°4 – Hollow/perforate                                                                          | d brick                 | 12x80                    | 15x85             | 20x85                                   |  |
| Admissible service load in tens                                                                       | ile F [kN]              | 0,39                     | 0,44              | 0,26                                    |  |
|                                                                                                       | $\delta_{N0} [mm]$      | 0,06                     | 0,06              | 0,06                                    |  |
| Displacement                                                                                          | $\delta_{N\infty}$ [mm] | 0,16                     | 0,16              | 0,16                                    |  |
|                                                                                                       |                         | M8                       | M10               | M12                                     |  |
| Brick n°5 – Hollow/perforate                                                                          | d brick                 | 12x80                    | 15x85             | 20x85                                   |  |
| Admissible service load in tens                                                                       | ile F [kN]              | 0,92                     | 0,91              | 1,02                                    |  |
| Displacement                                                                                          | $\delta_{N0}$ [mm]      | 0,06                     | 0,06              | 0,06                                    |  |
| Displacement                                                                                          | $\delta_{N\infty}$ [mm] | 0,16                     | 0,16              | 0,16                                    |  |
| Brick n°6 – Hollow/perforated brick                                                                   |                         | M8                       | M10               | M12                                     |  |
|                                                                                                       |                         | 12x80                    | 15x85             | 20x85                                   |  |
| Admissible service load in tens                                                                       |                         | 1,19                     | 1,69              | 1,78                                    |  |
| Displacement                                                                                          | δ <sub>N0</sub> [mm]    | 0,12                     | 0,07              | 0,06                                    |  |
| Displacement                                                                                          | $\delta_{N\infty}$ [mm] | 0,24                     | 0,16              | 0,16                                    |  |
|                                                                                                       | PE50 PRO                | tatic loads: Resistances | 0                 | Annex C2<br>f European<br>ical Assessme |  |

| ESSENTIAL CHARACTERISTICS                     |                         | PERFORMANCE |              |              |
|-----------------------------------------------|-------------------------|-------------|--------------|--------------|
| Displacement under service load<br>Shear load |                         |             |              |              |
| Brick n°1 – Solid brick                       |                         | M8          | M10          | M12          |
| Admissible service load in shear              | F [kN]                  | 1,32        | 2,94         | 2,62         |
| Displacement                                  | $\delta_{V0}$ [mm]      | 0,23        | 0,48         | 0,38         |
| Displacement                                  | $\delta_{V\infty}$ [mm] | 0,34        | 0,72         | 0,57         |
| Brick n°2 – Hollow/perforated brick           |                         | M8<br>12x80 | M10<br>15x85 | M12<br>20x85 |
| Admissible service load in shear              | F [kN]                  | 1,72        | 2,03         | 2,93         |
|                                               | $\delta_{V0}$ [mm]      | 0,20        | 0,38         | 0,34         |
| Displacement                                  | $\delta_{V\infty}$ [mm] | 0,30        | 0,57         | 0,51         |
| Brick n°3 – Hollow/perforated brick           |                         | M8<br>12x80 | M10<br>15x85 | M12<br>20x85 |
| Admissible service load in shear              | F [kN]                  | 0,93        | 1,08         | 0,86         |
|                                               | δv0 [mm]                | 0,31        | 0,23         | 0,18         |
| Displacement                                  | $\delta_{V\infty}[mm]$  | 0,46        | 0,34         | 0,27         |
| Brick n°4 – Hollow/perforated brick           |                         | M8<br>12x80 | M10<br>15x85 | M12<br>20x85 |
| Admissible service load in shear              | F [kN]                  | 0,44        | 0,63         | 0,44         |
|                                               | $\delta_{V0}$ [mm]      | 0,10        | 0,18         | 0,27         |
| Displacement                                  | $\delta_{V\infty}$ [mm] | 0,15        | 0,27         | 0,40         |
| Brick n°5 – Hollow/perforated brick           |                         | M8<br>12x80 | M10<br>15x85 | M12<br>20x85 |
| Admissible service load in shear              | F [kN]                  | 0,78        | 1,06         | 1,00         |
| Displacement                                  | $\delta_{V0}$ [mm]      | 0,23        | 0,19         | 0,31         |
| Displacement                                  | $\delta_{V\infty}$ [mm] | 0,34        | 0,28         | 0,46         |
| Brick n°6 – Hollow/perforated brick           |                         | M8<br>12x80 | M10<br>15x85 | M12<br>20x85 |
| Admissible service load in shear              | F [kN]                  | 1,25        | 2,23         | 1,65         |
| Displacement                                  | δv0 [mm]                | 0,17        | 0,69         | 0,13         |
| Displacement                                  | $\delta_{V\infty}$ [mm] | 0,25        | 1,03         | 0,19         |

#### Table C4: Reaction to fire.

| ESSENTIAL CHARACTERISTICS | PERFORMANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reaction to fire          | In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard. |

Table C5: Resistance to fire.

| ESSENTIAL CHARACTERISTICS      | PERFORMANCE |                                                                |
|--------------------------------|-------------|----------------------------------------------------------------|
| Resistance to fire             | NPD         |                                                                |
| PE50 PRO                       |             | Annex C3<br>of European<br>Technical Assessment<br>ETA-13/0743 |
| Performance for static and qua |             |                                                                |

#### Table C6: Terminology and symbols

| TERI              | MINOLOGY AND SYMBOLS                                                                                                                     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| d                 | Diameter of anchor bolt or thread diameter                                                                                               |
| d₀                | Drill hole diameter                                                                                                                      |
| $d_{\text{fix}}$  | Diameter of clearance hole in the fixture                                                                                                |
| h <sub>ef</sub>   | Effective anchorage depth                                                                                                                |
| h <sub>1</sub>    | Depth of the drilling hole                                                                                                               |
| Tinst             | Torque moment to installation                                                                                                            |
| t <sub>fix</sub>  | Thickness to be fixed                                                                                                                    |
| Smin              | Minimum allowable spacing                                                                                                                |
| Cmin              | Minimum allowable edge distance                                                                                                          |
| N <sub>Rk</sub>   | Characteristic tensile resistance for single anchor                                                                                      |
| $V_{Rk}$          | Characteristic shear resistance for single anchor                                                                                        |
| γMm               | Partial safety factors                                                                                                                   |
| S <sub>cr,N</sub> | Spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects       |
| C <sub>cr,N</sub> | Edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects |
| β                 | Factor according to ETAG 029 Annex B                                                                                                     |
| F                 | Service load                                                                                                                             |
| δ0                | Short term displacement under service load                                                                                               |
| $\delta_{\infty}$ | Long term displacement under service load                                                                                                |
| NPD               | No performance declared                                                                                                                  |

#### PE50 PRO

Annex C4 of European Technical Assessment ETA-13/0743

Terminology and symbols